Semidefinite relaxations for semi-infinite polynomial programming

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semidefinite Programming vs. LP Relaxations for Polynomial Programming

We consider the global minimization of a multivariate polynomial on a semi-algebraic set defined with polynomial inequalities. We then compare two hierarchies of relaxations, namely, LP relaxations based on products of the original constraints, in the spirit of the RLT procedure of Sherali and Adams (1990), and recent semidefinite programming (SDP) relaxations introduced by the author. The comp...

متن کامل

Convergent Semidefinite Programming Relaxations for Global Bilevel Polynomial Optimization Problems

In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper and the lower level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a ...

متن کامل

Semi-Infinite Programming using High-Degree Polynomial Interpolants and Semidefinite Programming

In a common formulation of semi-infinite programs, the infinite constraint set is a requirement that a function parametrized by the decision variables is nonnegative over an interval. If this function is sufficiently closely approximable by a polynomial or a rational function, then the semi-infinite program can be reformulated as an equivalent semidefinite program. Solving this semidefinite pro...

متن کامل

Semidefinite Relaxations for Integer Programming

We survey some recent developments in the area of semidefinite optimization applied to integer programming. After recalling some generic modeling techniques to obtain semidefinite relaxations for NP-hard problems, we look at the theoretical power of semidefinite optimization in the context of the Max-Cut and the Coloring Problem. In the second part, we consider algorithmic questions related to ...

متن کامل

Equality Based Contraction of Semidefinite Programming Relaxations in Polynomial Optimization

The SDP (semidefinite programming) relaxation for general POPs (polynomial optimization problems), which was proposed as a method for computing global optimal solutions of POPs by Lasserre, has become an active research subject recently. We propose a new heuristic method exploiting the equality constraints in a given POP, and strengthen the SDP relaxation so as to achieve faster convergence to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Optimization and Applications

سال: 2013

ISSN: 0926-6003,1573-2894

DOI: 10.1007/s10589-013-9612-1